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Abstract. The partition function of an oscillator disturbed by a set of electron particle paths has been
computed by a path integral formalism which permits to evaluate at any temperature the relevant cu-
mulant terms in the series expansion. The low temperature cutoffs in the anharmonic cumulant series are
determined fulfilling the constraint of the third law of thermodynamics. The general method here proposed
has been applied to the semiclassical Su-Schrieffer-Heeger model whose time dependent source current is
linear in the oscillator displacement field. We find that this peculiar current induces large electron-phonon
anharmonicities on the phonon subsystem. As a signature of anharmonicity the phonon heat capacity
shows a peak whose temperature location strongly varies with the strength of the e-ph coupling. Since
the electron hopping potential provides a sizeable background in the low and intermediate temperature
range, such a peak is partly smeared in the total heat capacity. Low energy oscillators are more sensitive
to anharmonic perturbations.

PACS. 71.20.Rv Polymers and organic compounds – 31.15.Kb Path-integral methods – 63.20.Kr
Phonon-electron and phonon-phonon interactions

1 Introduction

There is at present a growing interest in electron-phonon
non linearities also triggered by the signatures of a large
anharmonicity observed in metal diborides [1]. Phonon
anharmonicities have a long story in solid state physics
closely related to the inelastic neutron scattering the-
ory [2,3]. As the anharmonic effects are generally small in
crystals up to room temperature, second order perturba-
tion theory suffices to determine the lifetime due to three
phonons decay processes while the renormalization of the
frequencies, together with the three phonons terms, also
requires computation of the four phonons vertex in the
first order diagram plus a (dominant) contribution due to
the thermal expansion of the crystal [4]. It is known [5–7]
that most properties of real materials can be well de-
scribed by replacing the anharmonic phonons with the
temperature dependent renormalized harmonic phonons,
that is assuming quasi-harmonic vibrational models [8].
Instead, the damping of some anomalous bulk and surface
phonons requires explicit computation of the anharmonic
interactions [9,10]. However, neither first principles cal-
culations of anharmonicities based on density functional
perturbation theory [11] nor empirical force constant ap-
proaches do separate the bare phonon-phonon interactions
from the non linearities due to the electron-phonon cou-
pling. The latter contribution is generally incorporated in
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the former by fitting the third and fourth derivatives of
the interatomic potential to experimental thermoelastic
properties. In systems such as polymers, whose thermal
and conducting behavior is shaped by the strength of the
e-ph coupling, one would desire to estimate the amount
of e-ph anharmonicity which may become relevant both
in the intermediate and in the low temperature region, in
the latter the phonon-phonon interactions tend to vanish.

Theoretical investigations on polymers usually depart
from the Su-Schrieffer-Heeger (SSH) Hamiltonian [12–14]
in which the e-ph coupling is the derivative of the elec-
tron hopping integral with respect to the intersite atomic
displacement. As the electron propagator couples to the
oscillator displacement the SSH model can be attacked by
the path integral method [15–17] which allows one to de-
rive the time dependent probability amplitude for a parti-
cle in a bath of oscillators. On the other hand, considering
the electron particle path as the disturbing source for the
phonon subsystem one may evaluate the amount of e-ph
anharmonicity by expanding perturbatively the phonon
partition function. A study of the cumulant terms versus
temperature would permit to assess the relevance of the
e-ph interactions in the SSH model. This paper addresses
precisely this issue focusing on the computation of some
equilibrium thermodynamical properties of the harmonic
oscillators perturbed by the e-ph coupling. The path inte-
gral method for the model Hamiltonian is outlined in Sec-
tion 2. The cumulant expansion is presented in Section 3
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together with the analysis of the anharmonic corrections
to phonon free energy and heat capacity. Section 4 con-
tains some final remarks.

2 Hamiltonian model

In one dimension the SSH Hamiltonian is:

H =
∑

r

Jr,r+1

(
f †

r fr+1 + f †
r+1fr

)

Jr,r+1 = −1
2
[
J + α(ur − ur+1)

]
(1)

where J is the nearest neighbors hopping integral for an
undistorted chain, α is the electron-phonon coupling, ur

is the displacement of the atomic group on the r-lattice
site along the molecular axis, f †

r and fr create and de-
stroy electrons (i.e., π band electrons in polyacetylene)
on the r-group. The non-interacting phonon Hamiltonian
is given by a set of independent oscillators. Let’s apply
to the Hamiltonian in equation (1) space-time mapping
techniques previously used i.e. in the path integral for-
mulation of the theory of dilute magnetic alloys [18] and
in the path integral study of A15 compounds with strong
electron-phonon coupling [19]. On general grounds, the
method allows one to account for the time-retarded nature
of the interactions. Thus (1) transforms into a time de-
pendent Hamiltonian H(τ, τ ′) after introducing x(τ) and
y(τ ′) as the electron coordinates at the r and r +1 lattice
sites, respectively. The spatial e-ph correlations contained
in (1) are then mapped onto the time axis by changing:
ur → u(τ) and ur+1 → u(τ ′). Accordingly we get:

H(τ, τ ′) = Jτ,τ ′
(
f †(x(τ))f(y(τ ′)) + f †(y(τ ′))f(x(τ))

)
Jτ,τ ′ = −1

2
[
J + α(u(τ) − u(τ ′))

]
. (2)

The ground state of the SSH Hamiltonian is twofold de-
generate and, in real space, a soliton connects the two
phases with different senses of dimerization. As a local-
ized electronic state is associated to the soliton the SSH
model describes in principle both electron hopping be-
tween solitons and thermally activated hopping to band
states. By mapping onto equation (2) we introduce time
dependent electron hops while maintaining the fundamen-
tal features of the SSH Hamiltonian. As the hops are not
constrained to first neighbors sites along the chain H(τ, τ ′)
is more general than the real space Hamiltonian in (1).
Equation (2) shows the semiclassical nature of the model
in which quantum mechanical degrees of freedom inter-
act with the classical variables u(τ). After setting τ ′ = 0,
u(0) ≡ y(0) ≡ 0, we take the thermal average for the elec-
tron operators over the ground state thus obtaining the
average energy per lattice site due to electron hopping
plus e-ph coupling:

〈H(τ)〉
N

= V
(
x(τ)

)
+ u(τ)j(τ)

j(τ) = −α
(
G[−x(τ),−τ ] + G[x(τ), τ ]

)
(3)

where N = L/a, with L the chain length and a the lattice
constant. V

(
x(τ)

)
(proportional to J) is the effective term

accounting for the τ dependent electronic hopping while
j(τ) is the external source current for the oscillator field,
G[x(τ), τ ] being the electron propagator.

Let’s consider a large number N of lattice sites and
associate an oscillator field ui(τ) (with i = 1 . . .N) to
each of them. The set of harmonic oscillators represents
the dissipative bath for the quantum mechanical particle
whose coordinate is x(τ). As the average electron energy
(see Eq. (3)) in our time dependent SSH model depends
linearly on each of the phonon coordinates we can solve
the electron path integral which is formally given by

〈x(β)|x(0)〉 =
N∏

i=1

∫
Dui(τ)

∫
Dx(τ)

× exp

[
−

∫ β

0

dτ

N∑
i=1

Mi

2

(
u̇i

2(τ) + ω2
i u2

i (τ)
)]

× exp

[
−

∫ β

0

dτ

(
m

2
ẋ2(τ) + V

(
x(τ)

) − N∑
i=1

ui(τ)j(τ)
)]

(4)

β is the inverse temperature, m is the electron mass and
ωi are the oscillators frequencies. The oscillator masses are
considered as independent of i, Mi ≡ M and hereafter we
set M = 104m.

The oscillators coordinates can be straightforwardly
integrated over the paths Dui(τ) and after imposing a
closure condition

(
x(β) = x(0)

)
on the electron particle

paths, we obtain the total partition function in the func-
tional form:

Z(j(τ)) = Zph

∮
Dx(τ) exp

[
−m

2
ẋ2(τ)

− V
(
x(τ)

) − A(j(τ))
]

Zph =
N∏

i=1

1
2 sinh(�ωiβ/2)

A(j(τ)) = −χ

N∑
i=1

1
�ωi sinh(�ωiβ/2)

∫ β

0

dτG[x(τ), τ ]

×
∫ β

0

dτ ′′ cosh
(
ωi

(|τ − τ ′′| − β/2
))

× G [x(τ ′′), τ ′′])

χ =
�

2α2

4M
. (5)

The nonequilibrium quantum statistics of the system
can be derived via (4) through the closed-time path for-
malism [20] which permits to evaluate dissipative proper-
ties due to the phonon bath friction [21]. The thermo-
dynamical properties of the full interacting system are
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obtained by computing (5) after introducing a measure
of integration for the electron paths as detailed in refer-
ence [22]. In the present paper we focus on the equilibrium
thermodynamics of the phonon bath interacting with the
quantum particle of the Hamiltonian model whereas we
neglect phonon-phonon interactions whose effects become
relevant at high temperatures [23].

3 Electron-phonon anharmonicity

In general, the phonon partition function perturbed by
a source current j(τ) can be expanded in anharmonic
series as:

Zph[j(τ)] � Zph

(
1 +

k∑
l=1

(−1)l〈Cl〉j(τ)

)
(6)

where the cumulant terms 〈Cl〉j(τ) are expectation values
of powers of correlation functions of the perturbing po-
tential. The averages are meant over the ensemble of the
harmonic oscillators whose partition function is Zph.

A) As a first step we consider the general problem
of an electron path linearly coupled to a single oscillator
with energy ω and displacement u(τ), through the current
jx(τ) = −αx(τ). In this case odd −k cumulant terms
vanish and the lowest order even −k cumulants can be
derived as shown in the Appendix. To obtain a closed
analytical expression for the cumulants to any order we
approximate the electron path by its τ averaged value:
〈x(τ)〉 ≡ 1

β

∫ β

0
dτx(τ) = x0/a and expand the oscillator

path in NF Fourier components:

u(τ) = uo +
NF∑
n=1

2
(
�un cos(ωnτ) −�xn sin(ωnτ)

)
ωn = 2πn/β. (7)

Next we choose the measure of integration

∮
Du(τ) ≡

√
2

(2λM )(2NF +1)

∫ ∞

−∞
duo

×
NF∏
n=1

(
2πn

)2
∫ ∞

−∞
d�un

∫ ∞

−∞
d�un (8)

being λM =
√

π�2β/M . Such a measure normalizes the
kinetic term in the oscillator field action

∮
Du(τ) exp

[
−M

2

∫ β

0

dτu̇2(τ)

]
≡ 1. (9)

Then, using equations (7, 8) and equation (14) in Ap-
pendix, we obtain for the kth cumulant

〈Ck〉NF = Z−1
ph

(αRβλM )k(k − 1)!!
k!πk/2(ωβ)k+1

×
NF∏
n=1

(2nπ)2

(2nπ)2 + (ωβ)2

αR = αx0/a (10)

Let’s set x0/a = 0.1 in the following calculations thus
reducing the effective coupling αR by one order of mag-
nitude with respect to the bare value. However, the trend
shown by the results hereafter presented does not depend
on this choice since x0/a and α can be varied indepen-
dently. As the cumulants should be stable against the
number of Fourier components in the oscillator path ex-
pansion, using (10) we set the minimum NF through the
condition 2NF π 	 ωβ. The thermodynamics of the an-
harmonic oscillator can be computed by the cumulant cor-
rections to the harmonic phonon free energy:

F (k)(T ) = − 1
β

ln

[
1 +

k∑
l=1

〈C2l〉NF

]
. (11)

To proceed one needs a criterion to find the tempera-
ture dependent cutoff k∗ in the cumulant series. We feel
that, in the low T limit, the third law of thermodynamics
may offer the suitable constraint to determine k∗. Then,
given α and ω, the program searches for the cumulant or-
der such that the heat capacity and the entropy tend to
zero in the zero temperature limit. At any finite tempera-
ture T , the constant volume heat capacity is computed as

C
(k)
V (T ) = −

[
F (k)(T + 2∆) − 2F (k)(T + ∆) + F (k)(T )

]

×
( 1

∆
+

T

∆2

)
(12)

∆ being the incremental step and k∗ is determined as
the minimum value for which the heat capacity converges
with an accuracy of 10−4. Figures 1a and 1b show phonon
heat capacity and free energy respectively in the case of
a low energy oscillator for an intermediate value of e-ph
coupling. Harmonic functions, anharmonic functions with
second order cumulant and anharmonic functions with k∗
corrections are reported on in each figure. The second or-
der cumulant is clearly inadequate to account for the low
temperature trend yielding a negative phonon heat ca-
pacity below ∼40 K while at high T the second order
cumulant contribution tends to vanish. Instead, the inclu-
sion of k∗ terms in equations (11, 12) leads to the cor-
rect zero temperature limit although there is no visible
anharmonic effect on the phonon heat capacity through-
out the whole temperature range being C

(k∗)
V perfectly su-

perimposed to the harmonic Ch
V . Note in Figure 1b that
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Fig. 1. (a) Phonon heat capacity and (b) Phonon free energy
calculated in the harmonic model (solid line), the anharmonic
model with second order cumulant (dashed line), anharmonic
model with k∗ cumulants (symbols). αR is the effective e-ph
coupling in units meV Å−1 and ω is the phonon energy.

the k∗ corrections simply shift downwards the free energy
without changing its slope versus temperature. By increas-
ing αR, the low T range with wrong (negative) C

(2)
V broad-

ens (see Fig. 2a) whereas the k∗ contributions permit to
fulfill the zero temperature constraint and substantially
lower the phonon free energy (see Fig. 2b). Thus, for the
particular choice of constant (in τ) source current we find
that the e-ph anharmonicity renormalizes the phonon par-
tition function although no change occurs in the thermo-
dynamical behavior of the free energy derivatives. Anhar-
monicity is essential to stabilize the system but it leaves
no trace in the heat capacity [24]. Figure 3a displays
the k∗ temperature dependence for three choices of e-ph
coupling in the case of a low energy oscillator: while, at
high T , the number of required cumulants ranges between

Fig. 2. As in Figure 1 but with larger e-ph coupling.

six and ten according to the coupling, k∗ strongly grows
at low temperatures getting the value 100 at T = 1 K for
αR = 60 meV Å−1. The k∗ versus αR behavior is pointed
out in Figure 3b for three selected temperatures: at low T
the cutoff strongly varies with the strength of the coupling
while, by enhancing T , the number of cumulant terms in
the series is smaller and becomes much less dependent on
αR. Figure 3c shows that by decreasing the oscillator en-
ergy an increasing number of cumulants has to be taken
into account to make the thermodynamical functions con-
vergent. At T = 5 K the oscillator with ω ∼ 20 meV
requires ∼40 cumulant terms to stabilize its thermody-
namical properties. Instead, a cutoff k∗ ∼ 10 suffices for
ω ∼ 100 meV even at low temperatures [25] consistently
with the expectations that high energy oscillators are less
sensitive to e-ph induced anharmonicity.

B) Next we turn to the computation of the equilib-
rium thermodynamics of the phonon subsystem perturbed
by the source current of the semiclassical SSH model
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Fig. 3. (a) Cutoff k∗ in the cumulant expansion versus tem-
perature for three values of e-ph coupling (in units meV Å−1).
(b) Cutoff k∗ in the cumulant expansion versus e-ph coupling
for three selected temperatures. (c) Cutoff k∗ in the cumulant
expansion versus oscillator energy for three selected tempera-
tures.

described in Section 2. Assuming that the electron par-
ticle path interacts with each of the N oscillators through
the coupling α (taken independent of i), we write the kth
cumulant term as

〈Ck〉j(τ) = Z−1
ph

N∏
i=1

∮
Dui(τ)

× 1
k!

k∏
l=1

[∫ β

0

dτlui(τl)j(τl)

]l

× exp

[
−

∫ β

0

dτ

N∑
i=1

Mi

2
(
u̇i

2(τ) + ω2
i u2

i (τ)
)]

(13)

where j(τ) is given by equation (3). Since the oscillators
are infact decoupled in our model (and anharmonic effects
mediated by the electron particle path are neglected) the
behavior of the cumulant terms 〈Ck〉j(τ) can be studied
by selecting a single oscillator having energy ω and dis-
placement u(τ).

As the electron propagator depends on the bare hop-
ping integral we set J = 100 meV thus assuming a narrow
band electron system consistently with our previous stud-
ies. Any electron path yields in principle a different cu-
mulant contribution. Numerical investigation shows how-
ever that convergent k-order cumulants are achieved by:
i) taking MF = 2 Fourier components in the electron path
expansion, ii) setting for the coefficients {xo, cm} a max-
imum amplitude of order 0.1 (in units of the lattice con-
stant) and iii) summing over ∼ 52MF +1 electron paths.

As in the case A), we truncate the cumulant series
by invoking the third law of thermodynamics to deter-
mine the cutoff k∗ in the low temperature limit and by
searching numerical convergence on the first and second
free energy derivatives at any finite temperature. k∗ does
not depend on the specific electron path coefficients then,
〈Ck∗〉 =

∑
(xo,cm)〈Ck∗〉(xo,cm). Again, we can start our

analysis from (11) after checking that odd k cumulants
yield vanishing contributions. Now however the picture of
the anharmonic effects changes drastically. The e-ph cou-
pling strongly modifies the shape of the heat capacity and
free energy plots with respect to the harmonic result as it
is seen in Figures 4a and b respectively. The heat capacity
versus temperature curves show a peculiar peak above a
threshold value α ∼ 10 meV Å−1 which clearly varies ac-
cording to the energy of the harmonic oscillator. Here we
set ω = 20 meV to emphasize the size of the anharmonic
effects on a low energy oscillator. By enhancing α the
height of the peak grows and the bulk of the anharmonic
effects on the heat capacity is shifted towards lower T .
At α ∼ 60 meV Å−1 the crossover temperature is around
100 K. Note that the size of the anharmonic enhance-
ment is ∼10 times the value of the harmonic oscillator
heat capacity at T = 100 K. However such a large anhar-
monic effect on the phonon subsystem is partly covered in
the total heat capacity by the source action A(j(τ)) and
mainly by the hopping potential V (x(τ)) (see Eqs. (5))
contributions analysed in reference [22]. Taken for instance
a bath of ten low energy oscillators with ω = 20 meV,
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Fig. 4. Anharmonic (a) phonon heat capacity and (b) free energy versus temperature for eight values of e-ph coupling. The
harmonic plots are also reported on. A low energy oscillator is assumed. (c) Temperature dependence of the cutoff k∗ for: a
low energy oscillator (ω = 20 meV) with two values of e-ph couplings; a high energy oscillator (ω = 100 meV) with a strong
e-ph coupling value. (d) Temperatures at which the heat capacity shows the peak (see Fig. 4a) versus e-ph coupling at fixed ω
(bottom axes) and versus ω at fixed coupling (top axes).

setting α ∼ 60 meV Å−1 which implies an effective cou-
pling χ ∼ 700 meV3 (last of Eqs. (5)) we get a source heat
capacity a factor two larger than the harmonic phonon
heat capacity at temperatures of order 100 K. Thus the
anharmonic peak, although substantially smeared by the
electronic contributions to the total heat capacity, should
still appear in systems with low energy phonons and size-
able e-ph coupling to which the SSH Hamiltonian ap-
plies. It is worth noting that recent numerical studies of a
classical one dimensional anharmonic model undergoing a
Peierls instability [26] also find a specific heat peak as a
signature of anharmonicity.

At high T the anharmonic corrections renormalize
downwards the free energy but their effect on the heat ca-
pacity tends to decrease signalling that e-ph nonlinearities
are rather to be seen in the intermediate to low tempera-
ture range.

Also the k∗ versus T behavior described in Figure 4c is
much different from the previous case (see Fig. 3a): a few
cumulant terms suffice at low temperatures even at large
e-ph couplings (α ∼ 60 meV Å−1) and for a low energy
oscillator whereas k∗ grows by increasing T both for weak
and strong α. Then, k∗(T ) does not necessarily provide a
measure of the degree of e-ph anharmonicity as revealed
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by the heat capacity behavior. At room temperature, we
find k∗ = 14 in the strong coupling case with ω = 20 meV
while, by taking ω = 100 meV, k∗ drops attaining the
value 4. This would suggest that also in the SSH model
high energy phonons are expected to be less anharmonic.
The latter idea is confirmed by looking at Figure 4d where
the crossover temperature in the oscillator heat capacity
curves is reported on versus α at fixed ω = 20 meV (lower
axes) and versus ω at fixed α = 60 meV Å−1 (upper axes)
respectively. The following main features may be observed:
i) the peak is located at decreasing T by increasing α (as
clearly seen also in Fig. 4a); ii) there is no crossover at high
energies since the heat capacity has a positive derivative in
the whole range of temperatures; iii) by decreasing ω, the
peak shows up at ω ≤ 50 meV and its temperature loca-
tion is shifted downwards taking lower oscillator energies.
At ω = 20 meV we recover the crossover at T � 100 K.

4 Conclusions

We have studied the equilibrium thermodynamics of an
electron-phonon system looking in particular at the an-
harmonic effects produced by the electronic subsystem on
the phonon oscillators. The path integral formalism per-
mits to analyse the e-ph non linearities as a function of
the source current (peculiar of the Hamiltonian model)
which disturbs the harmonic oscillator. The phonon par-
tition function has been expanded in k-order cumulant
series and, in the zero temperature limit, we have set the
cutoff k∗ imposing the constraint given by the third law
of thermodynamics. At any finite temperature, k∗ ensures
convergence in the first and second free energy derivatives.
Rather than being a unique measure of e-ph anharmonic-
ity k∗(T ) turns out to be a model dependent function
whose values may vary considerably according to the phys-
ical quantities one decides to sample. As a general trend
we find however that, at fixed T and e-ph coupling, higher
energy oscillators are more stable and require a lower k∗
for the computation of their thermodynamical properties.

We have first considered the case of a source current
proportional to the time averaged electron path and an-
alytically derived the cumulant expansion for the phonon
partition function. This current induces a slope preserving
shift in the phonon free energy versus temperature hence,
the heat capacity does not show any correction with re-
spect to the harmonic result in spite of the high number
of anharmonic terms which appear in the cumulant series.

Next we have studied the semiclassical, one dimen-
sional Su-Schrieffer-Heeger model, a paradigm in polymer
physics, and summed the cumulant contributions due to
a significant number of electron and oscillator paths. The
cutoff k∗ depends both on the phonon energy and on the
value of the e-ph coupling. At stronger couplings k∗(T )
grows faster versus temperature. Using the time depen-
dent source current proportional to the electron propaga-
tor, we find a striking evidence of e-ph anharmonicity in
the constant volume heat capacity of a single oscillator.
As a main feature the phonon heat capacity exhibits a
peak whose height and location on the T axis varies with

the energy of the oscillator and the strength of the e-ph
coupling: while high energy phonons prove to be less af-
fected by e-ph corrections, strong couplings shift the main
body of the anharmonic effects towards low T . To point
out the relevance of the e-ph anharmonicities we have se-
lected a low energy oscillator and, for the largest e-ph cou-
pling value here considered, we have found a broad peak
whose maximum is roughly ten times over the harmonic
phonon background at T ∼ 100 K. Such a large effect
should be however partly smeared in the total heat capac-
ity as the electron hopping potential of the Su-Schrieffer-
Heeger Hamiltonian provides a large contribution both at
intermediate and at low temperatures. As seen in a pre-
vious investigation [22] the time dependent hopping po-
tential (V (x(τ)) in Eq. (3)) is infact responsible for the
characteristic upturn in the total heat capacity over T ra-
tio observed at low T and indicating that a glassy like
behavior can arise in the linear chain.

Thus, the present study is meant as complementary
to our cited previous analysis in the sense that here we
have found, mainly at intermediate T , sizeable electron-
phonon anharmonicities in the thermodynamics of low en-
ergy oscillators, essentially ascribable to the peculiar time
dependent source current (j(τ) in Eq. (3)) which linearly
couples to the oscillator field.

Appendix

Let’s assume a source current jx(τ) = −αx(τ) as the dis-
turbing term for a single oscillator field, α being the e-ph
coupling, M the atomic mass and x(τ) the electron path.
Then the kth order cumulant term contributing to the
x(τ)− perturbed phonon partition function is given by

〈Ck〉x(τ) = Z−1
ph

αk

k!

∮
Du(τ)

k∏
l=1

[∫ β

0

dτlu(τl)x(τl)

]l

× exp

[
−

∫ β

0

dτ
M

2
(
u̇2(τ) + ω2u2(τ)

)]
. (14)

We use the oscillator path and the functional measure
of integration given in the equations (7, 8) of the text
respectively. Then, the electron path expansion in Fourier
components

x(τ) = xo +
MF∑
m=1

(
cm cos(ωmτ) + dm sin(ωmτ)

)
ωm = 2πm/β

cm = 2�xm

dm = −2�xm (15)

will be truncated at MF = NF . Without any loss of gen-
erality we set dm = 0 and derive the following expressions
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for the lowest even order cumulants:

〈C2〉(xo,cm) = Z−1
ph

α2

2
(βλM )2

βω
F (NF ) ·

[
x2

o

π(βω)2

+
1
2π

NF∑
m=1

c2
m

(2πm)2 + (βω)2

]

〈C4〉(xo,cm) = Z−1
ph

α4

4!
(βλM )4

βω
F (NF ) ·

[
3x4

o

2π2(βω)4

+
3x2

o

2π2(βω)2

NF∑
m=1

2c2
m

(2πm)2 + (βω)2

+
3

8π2

NF∑
m=1,l>m

2c2
m

(2πm)2 + (βω)2

× 2c2
l

(2πl)2 + (βω)2

+
3

4π2

NF∑
m=1

c4
m

((2πm)2 + (βω)2)2

]

F (NF ) =
NF∏

m=1

(2πm)2

(2πm)2 + (βω)2
. (16)

Odd k-cumulants vanish at any order. Setting a maximum
amplitude for the coefficients xo and cm and integrating
equations (16) over a class of electron paths one finds the
total cumulant contributions to the partition function.
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